
LETTER Local forest structure variability increases resilience to wildfire

in dry western U.S. coniferous forests

Michael J. Koontz,1,2,3*

Malcolm P. North,2,4 Chhaya M.

Werner,2,5,6 Stephen E. Fick7,8

and Andrew M. Latimer2

Abstract

A ‘resilient’ forest endures disturbance and is likely to persist. Resilience to wildfire may arise
from feedback between fire behaviour and forest structure in dry forest systems. Frequent fire cre-
ates fine-scale variability in forest structure, which may then interrupt fuel continuity and prevent
future fires from killing overstorey trees. Testing the generality and scale of this phenomenon is
challenging for vast, long-lived forest ecosystems. We quantify forest structural variability and fire
severity across >30 years and >1000 wildfires in California’s Sierra Nevada. We find that greater
variability in forest structure increases resilience by reducing rates of fire-induced tree mortality
and that the scale of this effect is local, manifesting at the smallest spatial extent of forest struc-
ture tested (90 9 90 m). Resilience of these forests is likely compromised by structural homogeni-
sation from a century of fire suppression, but could be restored with management that increases
forest structural variability.
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INTRODUCTION

Forests are essential components of the biosphere, and ensuring
their persistence is of high management priority given their
large carbon stores and other valued ecosystem services (Trum-
bore et al. 2015; Higuera et al. 2019). Modern forests are subject
to disturbances that are increasingly frequent, intense and
entangled with human society, which may compromise their
resilience and their ability to persist (Millar & Stephenson 2015;
Seidl et al. 2016; Schoennagel et al. 2017; Hessburg et al. 2019;
McWethy et al. 2019). A resilient forest can absorb disturbances
and may reorganise, but is unlikely to transition to an alternate
vegetation type in the long run (Holling 1973; Walker et al.
2004). Resilience can arise when interactions among heteroge-
neous elements within a system create stabilising negative feed-
backs, or interrupt positive feedbacks that would otherwise
cause critical transitions (Peters et al. 2004; Reyer et al. 2015a).
System resilience can be generated by heterogeneity at a variety
of organisational scales, including genetic diversity (Reusch
et al. 2005), species diversity (Chesson 2000), functional diver-
sity (Gazol & Camarero 2016), topoclimatic complexity (Lenoir
et al. 2013) and temporal environmental variation (Questad &
Foster 2008). Forest resilience mechanisms are fundamentally
difficult to quantify because forests comprise long-lived species,
span large geographical extents, and are affected by distur-
bances at a broad range of spatial scales (Reyer et al. 2015a,
2015b). It is therefore critical, but challenging, to understand

the system-wide mechanisms underlying forest resilience and
the extent to which humans have the capacity to influence them.
Wildfire severity describes a fire’s effect on vegetation (Kee-

ley 2009) and high-severity fire, in which all or nearly all over-
storey vegetation is killed, can be a precursor to state
transitions in dry coniferous forests (Stevens et al. 2017; Davis
et al. 2019). For several centuries prior to Euroamerican inva-
sion, fire regimes in this ecosystem were variable as a conse-
quence of both natural and indigenous burning, with primarily
low- and moderate-severity fire and localised patches of high-
severity fire (Safford & Stevens 2017). Most dry coniferous tree
species in frequent-fire forests did not evolve mechanisms to
protect propagules (e.g. seeds, buds/stems that can resprout)
from high-severity fire, so recruitment in large patches with
few or no surviving trees is often limited by longer-distance
dispersal of tree seeds from unburned or lower-severity areas
(Welch et al. 2016; Stevens-Rumann & Morgan 2019). In the
Sierra Nevada, the absence of tree seeds after severe wildfire
can lead to forest regeneration failure as resprouting shrubs
outcompete slower-growing conifer seedlings and provide
continuous cover of flammable fuel that makes future high-
severity wildfire more likely (Collins & Roller 2013; Coppoletta
et al. 2016), though this pathway does not materialise in for-
ests with a slower post-fire vegetation response (Prichard &
Kennedy 2014; Stevens-Rumann et al. 2016). Dry forest regen-
eration is especially imperilled after high-severity fire when
post-fire climate conditions are suboptimal for conifer seedling
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establishment (Davis et al. 2019) or optimal for shrub regener-
ation (Young et al. 2019).
Many dry western U.S. forests are experiencing ‘unhealthy’

conditions which leaves them prone to catastrophic shifts in
ecosystem type (Millar & Stephenson 2015; McWethy et al.
2019). First, a century of fire suppression has drastically
increased forest density and fuel connectivity (Safford & Ste-
vens 2017), which increases competition for water (D’Amato
et al. 2013; van Mantgem et al. 2016) and favours modern
wildfires with large, contiguous patches of tree mortality
whose interiors are far from potential seed sources (Miller &
Thode 2007; Safford & Stevens 2017; Stevens et al. 2017; Steel
et al. 2018). Second, warmer temperatures coupled with recur-
rent drought exacerbate water stress on trees (Williams et al.
2013; Millar & Stephenson 2015; Clark et al. 2016), producing
conditions favourable for high-intensity fire (Fried et al. 2004;
Abatzoglou & Williams 2016) and less suitable for post-fire
conifer establishment (Stevens-Rumann et al. 2018; Davis
et al. 2019). Thus, the presence of stabilising feedbacks that
limit high-severity fire may represent a fundamental resilience
mechanism of dry coniferous forests, but anthropogenic cli-
mate and management impacts may be upsetting those feed-
backs and eroding forest resilience.
Resilience to disturbances such as wildfire may derive from

heterogeneity in vegetation structure (Turner & Romme 1994;
Stephens et al. 2008; North et al. 2009; Virah-Sawmy et al.
2009). Forest structure – the size and spatial distribution of
vegetation in a forest – links past and future fire disturbance
via feedbacks with fire behaviour (Agee 1996). A structurally
variable forest with horizontally and vertically discontinuous
fuel may experience slower-moving surface fires, a lower prob-
ability of crown fire initiation and spread, and a reduced
potential for self-propagating, eruptive behaviour (Scott &
Reinhardt 2001; Graham et al. 2004; Peters et al. 2004; Fox &
Whitesides 2015; Parsons et al. 2017). Feeding back to influ-
ence forest structure, this milder fire behaviour, characteristic
of pre-Euroamerican settlement conditions in dry western
U.S. forests, generates a heterogeneous patchwork of fire
effects including consumed understorey vegetation, occasional
overstorey tree mortality and highly variable structure at a
fine scale (Sugihara et al. 2006; Scholl & Taylor 2010; Cansler
& McKenzie 2014; Safford & Stevens 2017). Thus, more
structurally variable dry forests are often considered more
resilient and are predicted to persist in the face of frequent
wildfire disturbance (Graham et al. 2004; Moritz et al. 2005;
Stephens et al. 2008).
While the homogenizing effect of modern high-severity fire

on forest structure is well-documented (Steel et al. 2018), the
foundational concept of feedback between heterogeneity of for-
est structure and fire severity is underexplored at the ecosystem
scale, in part because of the dual challenges of measuring fine-
grain vegetation heterogeneity at broad spatial extents (Kane
et al. 2015; Graham et al. 2019) and linking local, bottom-up
processes to emergent ecosystem-wide patterns in an empirical
setting (Turner & Romme 1994; Bessie & Johnson 1995;
McKenzie & Kennedy 2011, 2012). Furthermore, it has been
difficult to resolve the ‘scale of effect’ (Graham et al. 2019) for
how variability in forest structure is meaningful for resilience
(Kotliar & Wiens 1990; Turner et al. 2013).

Advances in the accessibility and tractability of spatiotem-
porally extensive Earth observation data (Gorelick et al.
2017) provide an avenue to insight into fundamental ecosys-
tem properties at relevant scales, such as resilience mecha-
nisms of vast, long-lived forests. We use Landsat satellite
imagery and a massively parallel image processing approach
to calculate wildfire severity for over 1000 Sierra Nevada yel-
low pine/mixed-conifer wildfires encompassing a wide size
range (4 to >100 000 hectares) and long time series (1984–
2018). We calibrate these spectral severity measures to
ground assessments of fire effects on overstorey trees from
208 field plots. For each point within these c. 1000 fires, we
use texture analysis (Haralick et al. 1973) at multiple scales
to characterise local variability in vegetation structure across
broad spatial extents and determine its ‘scale of effect’ (Gra-
ham et al. 2019). We pair the resulting extensive database of
wildfire severity and multiple scales of local forest variability
to ask: (1) Does spatial variability in forest structure increase
the resilience of California yellow pine/mixed-conifer forests
by reducing the severity of wildfires? (2) What is the ‘scale
of effect’ of structural variability that influences wildfire
severity? and (3) Does the influence of structural variability
on fire severity depend on topography, regional climate or
other conditions?

MATERIAL AND METHODS

Study system

Our study assesses the effect of vegetation structure on wild-
fire severity in the Sierra Nevada mountain range of Califor-
nia in yellow pine/mixed-conifer forests (Fig. 1; Supporting
Information methods). This system is dominated by a mixture
of conifer species including ponderosa pine (Pinus ponderosa
Lawson & C. Lawson), sugar pine (Pinus lambertiana Dou-
glas), incense-cedar (Calocedrus decurrens (Torr.) Florin),
Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), white fir
(Abies concolor (Gord. & Glend.) Lindl. ex Hildebr.), and red
fir (Abies magnifica A. Murray bis), angiosperm trees primar-
ily including black oak (Quercus kelloggii Newberry), as well
as shrubs (Ceanothus spp., Arctostaphylos spp.) (Safford &
Stevens 2017).

Programmatically assessing wildfire severity

We measured forest vegetation characteristics and wildfire
severity using imagery from the Landsat series of satellites post-
processed to surface reflectance using radiometric corrections
(Masek et al. 2006; Vermote et al. 2016; USGS 2018a,b). Land-
sat satellites image the entire Earth approximately every
16 days with a 30 m pixel resolution. We used Google Earth
Engine for image collation and processing (Gorelick et al.
2017).
We calculated wildfire severity for the most comprehensive

record of fire perimeters in California: the Fire and Resource
Assessment Program (FRAP) fire perimeter database (https://
frap.fire.ca.gov/frap-projects/fire-perimeters/). The FRAP
database includes all known fires that covered more than 4
hectares, compared to the regional standard database which
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includes fires covering greater than 80 hectares (Miller & Saf-
ford 2012; Steel et al. 2018) and the national standard data-
base Monitoring Trends in Burn Severity (MTBS) which
includes fires covering greater than 400 hectares in the western
U.S. (Eidenshink et al. 2007). Smaller fire events are impor-
tant contributors to fire regimes, but their effects are often
underrepresented in analyses of fire effects (Randerson et al.
2012). The FRAP perimeters are error-checked, but it is possi-
ble that duplicated events are occasionally represented in the
database. Using the FRAP database, we quantified fire sever-
ity within each perimeter of 1008 wildfires in the Sierra
Nevada yellow pine/mixed-conifer forest that burned between
1984 and 2018, which more than doubles the number of fire
events with severity assessments compared to the regional
standard database.
We created per-pixel median composites of collections of

pre- and post-fire images for each fire to calculate common
spectral indices of wildfire severity. Pre-fire image collections
spanned a fixed time window ending the day before each fire’s
discovery date and post-fire image collections spanned the
same fixed time window, exactly one year after the pre-fire
window. We tested four different time periods (16, 32, 48, and
64 days) that defined the time window of the pre- and post-
fire image collections, and seven common spectral indices of
severity (RBR, dNBR, RdNBR, dNBR2, RdNBR2, dNDVI,
RdNDVI) for a total of 28 different means to remotely mea-
sure wildfire severity (Supporting Information methods).
We calibrated these 28 severity metrics with 208 field assess-

ments of fire effects from previous studies (Zhu et al. 2006;
Sikkink et al. 2013). Severity was measured in the field as the
overstorey component of the Composite Burn Index (CBI)– a
metric of vegetation mortality across several vertical

vegetation strata within a 30m diameter field plot. The over-
storey component of CBI characterises fire effects to the over-
storey vegetation specifically, which includes both dominant/
co-dominant big trees as well as intermediate-sized subcanopy
trees (generally 10–25 cm DBH and 8–20 m tall) (Key & Ben-
son 2006). CBI ranges from 0 (no fire impacts) to 3 (very high
fire impacts), and is a common standard for calibrating remo-
tely-sensed severity data in western U.S. forests (Key & Ben-
son 2006; Miller & Thode 2007; Miller et al. 2009; Cansler &
McKenzie 2012; Parks et al. 2014, 2018; Prichard & Kennedy
2014). We extracted each spectral severity metric at the CBI
plot locations using both bilinear and bicubic interpolation
(Cansler & McKenzie 2012; Parks et al. 2014, 2018) and fit a
non-linear model:

remote severity ¼ b0 þ b1e
b2cbi overstorey ð1Þ

We treated the spectral severity measure as the dependent
variable in this nonlinear regression for comparison with
other studies (Miller & Thode 2007; Miller et al. 2009; Parks
et al. 2014). We performed tenfold cross validation using the
modelr and purrr packages (Henry & Wickham 2019; Wick-
ham 2019) and report the average R2 value for each model.
We used the severity calculation derived from the best fitting
model for all further analyses (Relative Burn Ratio [RBR] cal-
culated using a 48-day time window; tenfold cross validation
R2 = 0.806; first panel of Fig. 2; Table S1).
Using the non-linear relationship between RBR and CBI,

we calculated the threshold RBR corresponding to ‘high-
severity’ signifying complete or near-complete overstorey mor-
tality using the common CBI high-severity lower threshold of
2.25 (i.e. an RBR value of 282.335; Fig. 3) (Miller & Thode
2007).

3+

2

1

Number
of fires

CBI plot

Remote
sample

(a) (b) (c)

Figure 1 Geographic setting of the study. (a) Location of yellow pine/mixed-conifer forests as designated by the Fire Return Interval Departure (FRID)

product which, among other things, describes the potential vegetation in an area based on the pre-Euro-American settlement fire regime. (b) Locations of

all fires covering >4 hectares that burned in yellow pine/mixed-conifer forest between 1984 and 2018 in the Sierra Nevada mountain range of California

according to the State of California Fire Resource and Assessment Program database, the most comprehensive database of fire perimeters of its kind.

Colours indicate how many fire perimeters overlapped a given pixel within the study time period. (c) (red) Locations of 208 composite burn index (CBI)

ground plots used to calibrate the remotely sensed measures of severity. (black) Locations of random samples drawn from 1008 unique fires depicted in

panel (b) that were in yellow pine/mixed-conifer forest as depicted in panel (a), and which were designated as ‘burned’ by exceeding a threshold relative

burn ratio (RBR) determined by calibrating the algorithm presented in this study with ground-based CBI measurements.
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Assessing local forest structure variability at broad extents

We used texture analysis to calculate a remotely-sensed mea-
sure of local forest variability (Haralick et al. 1973; Tuanmu
& Jetz 2015).
Within a moving square neighbourhood window with sides

of 90 m (3 9 3 pixels), 150m (5 9 5 pixels), 210 m (7 9 7
pixels) and 270 m (9 9 9 pixels), we calculated forest variabil-
ity for each pixel as the standard deviation of the NDVI val-
ues of its neighbours (not including itself). NDVI correlates
well with foliar biomass, leaf area index, and vegetation cover
(Rouse et al. 1973), so a higher standard deviation of NDVI
within a given local neighbourhood corresponds to discontin-
uous canopy cover and abrupt vegetation edges (see Fig. 4)
(Franklin et al. 1986).

Assessing other conditions

Elevation data were sourced from a 1-arc second digital eleva-
tion model (DEM) (Farr et al. 2007) which was used to calcu-
late slope, aspect, and potential annual heat load – an
integrated measure of latitude, slope, and aspect (McCune &
Keon (2002); Supporting Information methods). Per-pixel
topographic roughness was calculated as the standard devia-
tion of elevation values within the same-sized kernels as those
used for variability in forest structure (90 m, 150 m, 210 m,
and 270 m on a side and not including the central pixel). We

chose this specific measure of topographic roughness because
it directly parallels and accounts for our metric of forest struc-
ture variability and because of its use in other studies (Holden
et al. 2009), though other measures of topographic hetero-
geneity have been used for fire modelling (Haire & McGarigal
2009; Holden et al. 2009; Cansler & McKenzie 2014).
We calculated pre-fire fuel moisture as the median 100-h

fuel moisture for the 3 days prior to the fire using gridMET,
a gridded meteorological product with a daily temporal reso-
lution and a 4 9 4 km spatial resolution (Abatzoglou 2013).
The 100-hour fuel moisture is a correlate of the regional tem-
perature and moisture which integrates the relative humidity,
the length of day, and the amount of precipitation in the pre-
vious 24 h. Thus, this measure is sensitive to multiple hot dry
days across the 4 9 4 km spatial extent of each grid cell, but
not to diurnal variation in relative humidity nor to extreme
weather events during a fire.

Modelling

Approximately 100 random points were selected within each
FRAP fire perimeter in areas designated as yellow pine/mixed-
conifer forest and we extracted the values of severity and
covariate at those points using nearest neighbour interpolation.
Using the calibration equation described in eqn 1 for the best
configuration of the remote severity metric, we removed sam-
pled points corresponding to ‘unburned’ area prior to analysis
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Figure 2 Three top performing remotely-sensed severity metrics based on ten-fold cross validation (relative burn ratio, 48-day window, bicubic

interpolation; relative delta normalised burn ratio, 32-day window, bilinear interpolation; and relative delta normalised difference vegetation index, 48-day

window, bilinear interpolation) calculated using new automated image collation algorithms, calibrated to 208 field measures of fire severity (composite burn

index). See Table S1 for performance of all tested models.
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(i.e. below an RBR threshold of 45.097). The random sampling
amounted to 56088 total samples across 1008 fires.
We used a hierarchical logistic regression model (eqn. 2) to

assess the probability of high-severity wildfire as a linear com-
bination of the remote metrics described above: pre-fire NDVI
of each pixel, standard deviation of NDVI within a neigh-
bourhood (i.e. forest structural variability), the mean NDVI
within a neighbourhood, 100-hour fuel moisture, potential
annual heat load, and topographic roughness. We included
two-way interactions between the structural variability mea-
sure and pre-fire NDVI, neighbourhood mean NDVI, and
100-hour fuel moisture. We include the two-way interaction
between a pixel’s pre-fire NDVI and its neighbourhood mean

NDVI to account for structural variability that may arise
from contrasts between these variables (e.g. ‘holes in the for-
est’ vs. ‘isolated patches’; Fig. S2). We scaled all predictor
variables, used weakly-regularizing priors, and estimated an
intercept for each individual fire with pooled variance (i.e. a
group-level effect of fire). We used the brms package to fit
models in a Bayesian framework which implements the No U-
Turn Sampler extension to the Hamiltonian Monte Carlo
algorithm (Hoffman & Gelman 2014; B€urkner 2017). We used
four chains with 5000 samples per chain (including 2500
warmup samples) and chain convergence was assessed for
each estimated parameter by ensuring Rhat values were less
than or equal to 1.01 (B€urkner 2017).

Unburned
Low severity
Moderate severity
High severity

Figure 3 Example algorithm outputs for the Hamm Fire of 1987 (top half) and the American Fire of 2013 (bottom half) showing: pre-fire true colour

composite image (left third), post-fire true colour composite image (centre third), relative burn ratio (RBR) calculation using a 48-day image collation

window before the fire and one year later (right third). For visualisation purposes, the continuous severity index has been binned into severity categories.
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90 × 90 m
0.81 ha

150 × 150 m
2.25 ha

210 × 210 m
4.41 ha

270 × 270 m
7.29  ha

Figure 4 Example of homogenous forest (top row) and heterogeneous forest (bottom row) with the same mean NDVI values (c. 0.6). Each column

represents forest structural variability measured using a different neighbourhood size. NDVI is represented by a white to green colour gradient, and pixels

that are not included in the forest structural variability metric are coloured grey.
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high severityi;j �Bernð/i;jÞ
logitð/i;jÞ ¼
b0þ
bnbhd stdev NDVIX1;iþ
bprefire NDVIX2;iþ
bnbhd mean NDVIX3;iþ
bfm100X4;iþ
bpahlX5;iþ
btopographic roughnessX6;iþ
bnbhd stdev NDVI�fm100X1;iX4;iþ
bnbhd stdev NDVI�prefire NDVIX1;iX2;iþ
bnbhd stdevNDVI�nbhd mean NDVIX1;iX3;iþ
bnbhd mean NDVI�prefire NDVIX3;iX2;iþ
cj

cj �Nð0; rfireÞ

Scale of effect of forest structure variability

Each neighbourhood size (90, 150, 210, 270 m) was substi-
tuted in turn for the neighbourhood standard deviation of
NDVI, neighbourhood mean NDVI, and terrain roughness
covariates to generate a candidate set of four models. To
assess the scale at which these neighbourhood-size-dependent
effects manifested, we compared the four candidate models
using leave-one-out cross validation (Vehtari et al. 2017). We
inferred that the neighbourhood size window used in the best-
performing model reflected the scale at which the forest struc-
ture variability effect had the most support (Graham et al.
2019). We used R for all statistical analyses (R Core Team
2018).

RESULTS

Our programmatic assessment of wildfire severity calibrates as
well or better than other reported methods that often require
substantial manual intervention (Edwards et al. 2018). We
found that this approach was robust to a wide range of spec-
tral severity metrics, time windows, and interpolation tech-
niques, including those based on NDVI, which are seldom-
used in this system (Fig. 2; Table S1; Supporting Information
methods).
The model with the best out-of-sample prediction accuracy

assessed by leave-one-out cross validation was the model fit
using the smallest neighbourhood size for the variability of
forest structure (standard deviation of neighbourhood NDVI),
the mean of neighbourhood NDVI, and the terrain roughness
(standard deviation of elevation) (Table 1). One hundred per-
cent of the model weight belongs to the model using the
smallest neighbourhood size window.
We report the results from fitting the model described in

eqn 2 using the smallest neighbourhood size (90 9 90 m)
because this was the best performing model (see above) and

because the size and magnitude of estimated coefficients were
similar across neighbourhood sizes (Table S2).
The strongest influence on the probability of a forested

area burning at high-severity was the a pixel’s pre-fire
NDVI, with a greater pre-fire NDVI increasing the probabil-
ity of high-severity fire (bpre-fire_ndvi = 1.06; 95% CI: [0.931,
1.192]); Fig. 5). There was a strong negative relationship
between 100-h fuel moisture and wildfire severity such that
increasing 100-h fuel moisture was associated with a decreas-
ing probability of a high-severity wildfire (bfm100 = �0.576;
95% CI: [�0.709, �0.442]) (Fig. 5). Potential annual heat
load, which integrates aspect, slope, and latitude, also had a
strong positive relationship with the probability of a high-
severity fire. Areas that were located on southwest facing
sloped terrain at lower latitudes had the highest potential
annual heat load, and were more likely to burn at high-
severity (bpahl = 0.246; 95% CI: [0.215, 0.277]) Fig. 5). We
found a negative effect of the pre-fire neighbourhood mean
NDVI on the probability of a pixel burning at high-severity
(bnbhd_mean_NDVI = �0.168; 95% CI: [�0.311, �0.028]). This
is in contrast to the positive effect of the pre-fire NDVI of
the pixel itself. We found no effect of local topographic
roughness on wildfire severity (btopographic_roughness = 0.002;
95% CI: [�0.029, 0.034]).
There was also a strong negative interaction between the neigh-

bourhood mean NDVI and the pre-fire NDVI of the central pixel
(bnbhd_mean_NDVI*pre-fire_NDVI=�0.54; 95% CI: [�0.587,
�0.494]).
From the same model, we found strong evidence for a

negative effect of variability of vegetation structure on the
probability of a high-severity wildfire (bnbhd_stdev_NDVI =
�0.213; 95% CI: [�0.251, �0.174]); Fig. 5). We also found sig-
nificant interactions between variability of vegetation structure
and pre-fire NDVI of the central pixel
bnbhd_stdev_NDVI*pre-fire_NDVI = 0.128; 95% CI: [0.031, 0.221]) as
well as between variability of vegetation structure and neigh-
bourhood mean NDVI (bnbhd_stdev_NDVI*nbhd_mean_NDVI =
�0.115; 95% CI: [�0.206, �0.022]).

DISCUSSION

Broad-extent, fine-grain, spatially-explicit analyses of whole
ecosystems are key to illuminating macroecological phenom-
ena such as forest resilience to disturbance (Heffernan et al.
2014). We used a powerful, cloud-based geographic informa-
tion system and data repository, Google Earth Engine, as a
‘macroscope’ (Beck et al. 2012) to study feedbacks between
vegetation structure and wildfire disturbance in yellow pine/
mixed-conifer forests of California’s Sierra Nevada mountain
range. With this approach, we reveal and quantify general fea-
tures of this forest system, and gain deeper insights into the
mechanisms underlying its function.

High-severity wildfire and ecological resilience

Wildfire severity can be considered a direct correlate of a for-
est’s resistance – the ease or difficulty with which a distur-
bance changes the system state (Folke et al. 2004; Walker
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et al. 2004). One relevant state change for assessing ecosystem
resistance is the loss of its characteristic native biota (Keith
et al. 2013), which could be represented as overstorey tree
mortality (e.g. severity) in a forested system. The same fire
behaviour in two different forest systems (e.g. old-growth con-
ifer versus young conifer plantation) may have very different
abilities to cause overstorey mortality (Keeley 2009), which
reflects differences in each forest’s resistance. Resistance is a

key component of resilience (Folke et al. 2004; Walker et al.
2004) and, in this framework, one manifestation of forest resi-
lience is high resistance to wildfire, whereby some mechanism
leads to lower severity when a fire occurs. Here, we show clear
evidence that structural heterogeneity fulfils this mechanistic
resistance role in dry coniferous systems (Fig. 5). This study
thus provides a particularly extensive, large-scale example of
an association between local structural heterogeneity and

Table 1 Comparison of four models described in eqn 2 using different neighbourhood sizes for calculating forest structural variability (standard deviation

of NDVI within the neighbourhood), neighbourhood mean NDVI, and topographic roughness (standard deviation of elevation within the neighbourhood).

LOO is a measure of a model’s predictive accuracy (with lower values corresponding to more accurate prediction) and is calculated as �2 times the

expected log pointwise predictive density (elpd) for a new dataset (Vehtari et al. 2017). DLOO is the difference between a model’s LOO and the lowest

LOO in a set of models (i.e. the model with the best predictive accuracy). The Bayesian R2 is a ‘data-based estimate of the proportion of variance explained

for new data (Gelman et al. 2019). Note that Bayesian R2 values are conditional on the model so shouldn’t be compared across models, though they can

be informative about a single model at a time

Model

Neighbourhood size for

variability measure LOO (�2*elpd) DLOO to best model SE of DLOO LOO model weight (%) Bayesian R2

1 90 9 90 m 42 364 0 NA 100 0.300

2 150 9 150 m 42 417 53.17 14.99 0 0.299

3 210 9 210 m 42 459 94.44 21.35 0 0.299

4 270 9 270 m 42 491 126.5 25.15 0 0.298
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Figure 5 The main effects and 95% credible intervals of the covariates having the strongest relationships with the probability of high-severity fire. All

depicted relationships derive from the model using the 90 9 90 m neighbourhood size window for neighbourhood standard deviation of NDVI,

neighbourhood mean of NDVI, and topographic roughness, as this was the best performing model of the four neighbourhood sizes tested. The effect sizes

of these covariates were similar for each neighbourhood size tested.
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ecosystem resilience, a phenomenon that has been demon-
strated in other systems at smaller scales.
These findings do not imply that resistance to fire is a sole

or necessary path to resilience. For instance, high-severity fire
is characteristic of other forest systems such as serotinous
lodgepole pine forests in Yellowstone National Park, and is
not ordinarily expected to hamper forest regeneration (Turner
et al. 1997). Our inference that structural variability is a fun-
damental resilience mechanism in dry coniferous forests is
strengthened by its large effect size and our ability to measure
the negative feedback phenomenon at relevant spatiotemporal
scales: we captured local-scale variability in structure and
wildfire severity at broad spatial extents for an extensive set
of over 1000 fires across a 34-year time span.

Factors influencing the probability of high-severity wildfire

We found that the strongest influence on the probability of
high-severity wildfire was pre-fire NDVI. Greater NDVI cor-
responds to high canopy cover and vegetation density (Rouse
et al. 1973) which translates directly to live fuel loads in the
forest canopy and can increase high-severity fire (Parks et al.
2018). Overstorey canopy cover and density also correlate
(though weakly) with surface fuel loads (Lydersen et al. 2015;
Collins et al. 2016; Cansler et al. 2019), which can play a large
role in driving high-severity fire in these forests (Agee 1996).
Thus NDVI is likely a strong predictor of fire severity because
it is correlated with both surface fuel loads and canopy live
fuel density.
We found a strong positive effect of potential annual heat

load as well as a strong negative effect of 100-hour fuel mois-
ture, results which corroborates similar studies (Parks et al.
2018). Some work has shown that terrain roughness (Haire &
McGarigal 2009; Holden et al. 2009; Dillon et al. 2011; Kraw-
chuk et al. 2016) can be an important predictor of wildfire
severity, but we found no effect using our measure of local
terrain variability. This may be a function of scale – our mea-
sures of topographic roughness were more localised than
those of other studies (Holden et al. 2009; Dillon et al. 2011).
Haire & McGarigal (2009) also found occasional instances
where small differences in topographic roughness had dra-
matic differences in severity. These sorts of influences on
severity would be challenging to detect in our modelling
framework, which was designed to estimate an overall influ-
ence of topographic roughness on fire severity. Also, topo-
graphic roughness could be measured in different ways that
highlight different types of heterogeneity (Haralick et al.
1973), which suggests that an effect of topographic roughness
on mean wildfire severity will be best-captured by a roughness
measure that aligns with the dominant phenomenon driving
that effect. Finally, the observed influence of topographic
roughness in other studies may have been fully or partially
driven by variability in vegetation, which we partition sepa-
rately in our study.
Critically, we found a strong negative effect of forest struc-

tural variability on wildfire severity that was opposite in direc-
tion but similar in magnitude to the effect of potential annual
heat load. Just as the positive effect of NDVI is likely driven
by increased fuel loads, the negative effect of variability in

NDVI, is likely driven by discontinuity in surface, ladder, and
canopy fuels, which can reduce the probability of initiation
and spread of tree-killing crown fires (Wagner 1977; Agee
1996; Graham et al. 2004). This discontinuity can manifest in
a number of ways. For instance, neighbouring forest pixels
with different tree size distributions may disrupt a crown fire’s
spread from a low to a high crown or vice versa. Local NDVI
variability may also reflect heterogeneous arrangement of veg-
etation types such as a forested pixel adjacent to a pixel
mostly covered by grass. In the grass-dominated area, the rel-
atively low flame heights would likely fail to initiate or sustain
active crowning behaviour that would kill overstorey trees in
the neighbouring forested area. Finally, forest structural vari-
ability may also arise with different land cover types in the
local neighbourhood that influence severity, such as when
exposed bedrock or a group of boulders acts as fire
refugia for vegetation rooted within it (Hylander & Johnson
2010).

Feedback between forest structural variability and wildfire severity

This system-wide inverse relationship between structural vari-
ability and wildfire severity closes a feedback that links past
and future fire behaviour via forest structure. Frequent wild-
fire in dry coniferous forests generates variable forest structure
(North et al. 2009; Larson & Churchill 2012; Malone et al.
2018), which in turn, as we demonstrate, dampens the severity
of future fire. In contrast, exclusion of wildfire homogenises
forest structure and increases the probability that a fire will
produce large, contiguous patches of overstorey mortality
(Stevens et al. 2017; Steel et al. 2018). The proportion and
spatial configuration of fire severity in fire-prone forests are
key determinants of their long-term persistence (Stevens et al.
2017; Steel et al. 2018). Lower-severity fire or scattered
patches of higher-severity fire reduce the risk of conversion to
a non-forest vegetation type (Kemp et al. 2016; Stevens-
Rumann et al. 2018; Walker et al. 2018), while prospects for
forest regeneration are bleaker when high-severity patch sizes
are much larger than the natural range of variation for the
system (Miller & Safford 2017; Stevens et al. 2017; Stevens-
Rumann & Morgan 2019). Thus, the forest-structure-mediated
feedback between past and future fire severity underlies the
resilience of the Sierra Nevada yellow pine/mixed-conifer
system.

Scale of effect of variability in forest structure

We found that the effect of a forest patch’s neighbourhood
characteristics on the probability of high-severity fire was
strongest at the smallest neighbourhood size that we tested,
90 9 90 m. This suggests that the moderating effect of forest
structure variability on fire severity is a very local phe-
nomenon. This corroborates work by Safford et al. (2012),
who found that crown fires (high tree-killing potential) were
almost always reduced to surface fires (low tree-killing
potential) within 70 m of entering a fuel reduction treatment
area.
Severity patterns at a landscape scale (e.g. for a whole fire)

may represent cross-scale emergences of the local influence of
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forest structure variability on fire effects (Peters et al. 2004;
Rose et al. 2017). For instance, forest management actions
(e.g. prescribed fire, use of wildfire under mild conditions) that
reduce fuel loads and increase structural variability can be
effective at reducing fire severity across broader spatial extents
than the direct footprints of those actions (Graham et al.
2004; Stephens et al. 2009; Tubbesing et al. 2019). Some work
suggests that this sort of cross-scale emergence may depend
on even broader-scale effects of fire weather, with small-scale
variability failing to influence fire behaviour under extreme
conditions (Peters et al. 2004; Lydersen et al. 2014), though
we did not detect such an interaction between our metric of
burning conditions (100-hour fuel moisture) and forest struc-
ture variability.

Correlation between covariates and interactions

Unexpectedly, we found a strong interaction between the
pre-fire NDVI at a pixel and its neighbourhood mean NDVI
on the probability of high-severity fire. These two variables
are strongly correlated (Spearman’s q = 0.97), so the general
effect of this interaction is to dampen the dominating effect
of pre-fire NDVI. Thus, though the marginal effect of pre-
fire NDVI on the probability of high-severity fire is still pos-
itive and large, its real-world effect might be more compara-
ble to other modelled covariates when including the negative
main effect of neighbourhood mean NDVI, the negative
interaction effect of pre-fire NDVI and neighbourhood mean
NDVI, and their tendency to covary (compare the effect of
pre-fire NDVI under the common scenario of pre-fire NDVI
and neighbourhood mean NDVI increasing or decreasing
together: bpre-fire_ndvi+bnbhd_mean_NDVI+bnbhd_mean_NDVI*pre-
fire_NDVI = 0.352, to the effect of 100-h fuel moisture, which
becomes the effect with the greatest magnitude:
bfm100 = �0.576).
In the few cases when pre-fire NDVI and the neighbour-

hood mean NDVI contrast, there is an overall effect of
increasing the probability of high-severity fire. When pre-fire
NDVI at the central pixel is high and the neighbourhood
NDVI is low (e.g. an isolated vegetation patch; Figure S2),
the probability of high-severity fire is expected to dramatically
increase. When pre-fire NDVI at the central pixel is low and
the neighbourhood NDVI is high (e.g. a hole in the forest;
Figure S2), the probability of high-severity fire at that central
pixel is still expected to be fairly high even though vegetation
is sparse there. In these forest NDVI datasets, when these
variables do decouple, they tend to do so in the ‘hole in the
forest’ case and lead to a greater probability of high-severity
fire at the central pixel despite its low NDVI. This can per-
haps be explained if the consistently high vegetation density in
a local neighbourhood – itself more likely to burn at high-
severity – exerts a contagious effect on the central pixel, rais-
ing its probability of burning at high-severity regardless of
how much fuel might be there to burn.

CONCLUSIONS

Theory and empirical work suggest a general link between
forest structural heterogeneity and resilience. Here we find

strong evidence with a large-scale study that, across large
areas of forest, variable forest structure generally makes
yellow pine/mixed-conifer forest in the Sierra Nevada more
resistant to inevitable wildfire disturbance. It has been
well-documented that frequent, low-severity wildfire maintains
forest structural variability. Here we demonstrate a system-
wide reciprocal effect suggesting that greater local-scale
variability of vegetation structure makes fire-prone, dry forests
more resilient to wildfire and may increase the probability of
their long-term persistence.
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