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Abstract. Many important ecological phenomena occur on large spatial scales and/or are
unplanned and thus do not easily fit within analytical frameworks that rely on randomization,
replication, and interspersed a priori controls for statistical comparison. Analyses of such
large-scale, natural experiments are common in the health and econometrics literature, where
techniques have been developed to derive insight from large, noisy observational data sets.
Here, we apply a technique from this literature, synthetic control, to assess landscape change
with remote sensing data. The basic data requirements for synthetic control include (1) a dis-
crete set of treated and untreated units, (2) a known date of treatment intervention, and (3)
time series response data that include both pre- and post-treatment outcomes for all units. Syn-
thetic control generates a response metric for treated units relative to a no-action alternative
based on prior relationships between treated and unexposed groups. Using simulations and a
case study involving a large-scale brush-clearing management event, we show how synthetic
control can intuitively infer treatment effect sizes from satellite data, even in the presence of
confounding noise from climate anomalies, long-term vegetation dynamics, or sensor errors.
We find that accuracy depends on the number and quality of potential control units, highlight-
ing the importance of selecting appropriate control populations. Although we consider the syn-
thetic control approach in the context of natural experiments with remote sensing data, we
expect the methodology to have wider utility in ecology, particularly for systems with large,
complex, and poorly replicated experimental units.
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INTRODUCTION

The problem

Many important ecological phenomena occur on large
spatial scales or are unplanned and thus do not easily fit
within analytical frameworks that rely on randomized,
replicated, and interspersed a priori controls for statisti-
cal comparison. Analytical problems endemic to large-
scale experiments and other ecological events, are well
documented and have elicited lively debate (Oksanen
2001, 2004, Hurlbert 2004). For instance, manipulations
of whole lakes, watersheds, islands, forests, or other
large-scale ecosystems may be impossible to replicate,
and therefore inappropriate for frequentist statistical
approaches (Hurlbert 1984), but still worthy of formal
assessment (Carpenter 1998). Other targets of manipula-
tion may be complex or lack discrete boundaries (e.g.,
marine systems; Wernberg et al. 2012), making it

difficult to identify suitable nearby analogues for com-
parison. As many traditional statistical approaches may
be inappropriate for these types of data, there is a need
for ways to efficiently derive quantitative insights about
the effects of large-scale experiments, ecological events,
or manipulations.
In a management or policy context, effective decision-

making requires inference from past manipulations and
ecological events as part of the adaptive management
cycle (Williams 2011). Although historic management
actions or “interventions” may be plentiful and wide-
spread (Copeland et al. 2018), adaptive management is
often limited by lack of monitoring data and the means
to distinguish treatment effects from other confounding
influences through controls and replication. For
instance, the effectiveness of a rangeland planting may
be ambiguous if subsequent recruitment was coincident
with abnormally high precipitation and natural recruit-
ment in the months following treatment. Without simul-
taneous monitoring of sites with similar ecological
potential and ambient conditions, it is difficult to dis-
criminate true treatment effects from coincident noise
(Larsen et al. 2019). While some management efforts do
integrate experimental elements such as replication,
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randomization or basic controls into their design (e.g.,
Karl et al. 2014, Bestelmeyer et al. 2019), the logistical
cost of such designs make them rare in application set-
tings. With the growing availability of large observa-
tional environmental data sets and spatially explicit
records of management activities, there is both opportu-
nity for new ecological insight and a simultaneous need
for tools to effectively parse intervention effects from
confounding signals.

Insights from social science

Analytical challenges related to large, poorly repli-
cated, and uncontrolled phenomena are common in
other disciplines including political science, public
health, and economics, where quantifying the effects of
policies or other events (economic “shocks,” disease out-
breaks) are critical for understanding large and complex
systems (Larsen et al. 2019). In these disciplines, a host
of analytical tools and methods have been developed to
quantify the causal effects of a given event, despite the
limitations imposed by small sample sizes, nonrandom
exposure of experimental units, heterogenous con-
founders through time, and lack of a priori control
groups (Craig et al. 2017). These techniques often place
emphasis on identifying or generating proper compar-
isons among treated and untreated groups, such as the
methods of propensity score matching (Dehejia and
Wahba 2002), regression discontinuity (Imbens and
Lemieux 2008), and difference in differences (Ashenfel-
ter and Card 1985).
One relatively novel technique for causal analysis in the

absence of predefined references is the “synthetic control”
method, emerging from the econometrics literature (Aba-
die and Gardeazabal 2003, Abadie et al. 2010). This
approach attempts to reconstruct what would have hap-
pened if a treatment had not occurred (a “counterfac-
tual”), based on the pre-intervention relationship between
the unit of interest and a population of unaffected units.
It is particularly useful for cases with few treated units
and a potentially large number of imperfectly matched
control groups, such as when entire countries are the tar-
gets of analysis. For example, Abadie et al. (2015) esti-
mate the effect of the German reunification in 1990 on
the GDP of West Germany, using a weighted composite
of countries sharing similar characteristics. They estimate
that by 2003, West German GDP would have been almost
8% higher without reunification.
The synthetic control approach seeks to generate a

composite counterfactual by functionally relating pat-
terns in treated units to candidate controls using only
data from the pre-treatment period, then extrapolating
this function into the post-treatment period. A key inno-
vation of synthetic control is the use of data-driven
methods for selecting and weighting controls, an
approach particularly suited for “wide” data sets with a
large number of predictors (controls and/or covariates)
relative to treated observations. While several different

methods have been used “under the hood” to model this
relationship (Kinn 2018), all methods share a set of gen-
eral requirements about the data: (1) a known date of
treatment intervention, (2) a known group of units not
influenced by the treatment intervention, and (3) a time
series spanning pre- and post-treatment event for all
control and treated units. Given these constraints, a
potentially large number of modeling approaches are
available to generate such a synthetic control, each with
their own set of assumptions and strictures (e.g., toler-
ance of missing data, assumption of parallel trajectories
through time, ability to extrapolate, etc.), and each
having advantages and disadvantages in ecological
applications.

Synthetic control in ecology

The few previous uses of synthetic control in environ-
mental contexts have predominantly focused on deter-
mining the effectiveness of policies or events on forest
dynamics and socioeconomic outcomes (Sills et al. 2015,
Jones 2018, Rana and Sills 2018, Rana and Miller 2019,
Roopsind et al. 2019). However, we propose that this
technique may be useful more broadly in ecology, partic-
ularly in cases where the units of analysis are large, com-
plex, and lack replication or pre-meditated and well-
matched controls. In this study, we examine the utility of
synthetic controls for analyzing a hypothetical distur-
bance with time series of remote sensing imagery, i.e.,
data that are temporally and spatially extensive but also
noisy and prone to confounding. Typical approaches for
inferring effects from remote sensing data generally (1)
use only the time series of treated pixels and thus ignore
potentially useful contextual information from unaf-
fected areas (Fiorella and Ripple 1993, Copeland et al.
2018, Monroe et al. 2020), or (2) use differencing tech-
niques (e.g., Difference in Differences, hereafter DiD;
Ashenfelter and Card 1985, Abadie 2005, Craig et al.
2017), which may require ad hoc decisions about con-
trols and over-simplify the contextual information
(Fig. 1; Malmstrom et al. 2009, Waller et al. 2018). For
instance, imperfect matching between controls and treat-
ment areas may produce bias if the controls respond dif-
ferently to the same confounding factor, such as
divergent responses to the same climate forcing among
communities (Winkler et al. 2019). Reducing the need
for exact matching between treatments and controls has
been proposed to be a major advantage of the synthetic
control approach (Craig et al. 2017).
Here we briefly review synthetic control methodology

with attention to key assumptions, advantages, and best
practices relevant for analyzing ecological data. We then
evaluate the performance of several methods for assessing
landscape-scale treatment effects (synthetic control, DiD,
time series-only) using a simulated satellite time series of
a spectral index (NDVI). We include various sources of
random and systematic confounding noise and examine
how the signal-to-noise ratio, available number of
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reference pixels, and ecological mismatch between refer-
ence and treatment pixels influence the ability of each
method to identify a simple treatment effect representing
vegetative disturbance followed by recovery. We hypothe-
sized that synthetic controls would more accurately detect
“true” treatment responses in the face of confounding
random noise, and imperfect matching between controls
and treatment, but that these effects would be contingent
on the number and quality of controls available. We then
demonstrate the use of synthetic control and other meth-
ods using a case study involving a brush-clearing treat-
ment in southeastern Utah.

METHODS

Synthetic control and other causal inference methods

Synthetic control comes from a family of “quasi-experi-
mental” analysis methods originating in the social

sciences (Campbell and Stanley 1963). These approaches
tackle the fundamental problem of causal inference – that
one cannot observe both the treated and untreated out-
come for the same individual (Holland 1986) – while
using purely observational data without randomized con-
trols. In the social sciences, this challenge has been for-
malized in the “counterfactual model” or “potential
outcomes framework,” a set of definitions and assump-
tions built around making valid causal inference (Rubin
1974, Morgan and Winship 2015). While all quasi-experi-
mental methods in this framework share some key
assumptions, such as the lack of contagion in treatment
effects between treated and control units (i.e., Rubin
1974) approaches tend to be differentiated based on the
types of assumptions made about relationships in the
data – such as whether controls and treated units would
respond similarly to the same treatment based on the fact
they are similar in other, observable ways (i.e., “selection
on the observables”); or whether controls and treated
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FIG. 1. General strategies for inferring treatment effects with observational data lacking randomized controls.
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units would be expected to follow similar paths in the
absence of a treatment (i.e., “parallel paths”). Following
these assumptions, analysis focuses around generating
appropriate comparisons for the treated units (Fig. 1).

Time series methods.—One intuitive, but basic way to
generate a comparison for a treated observation is to use
its pre-treatment state or trajectory as a contrast, partic-
ularly if outcomes are in a time series and there are no
suitable ways to select controls. For comparing pre- and
post-treatment trends, a large number of time series
analysis methods are available, but one particularly
straightforward implementation is Interrupted Time Ser-
ies (ITS) analysis (Bhaskaran et al. 2013). The most
basic ITS model is a segmented regression that includes
a term for pre-treatment trend, post-treatment trend,
and a step-adjustment for the period immediately fol-
lowing treatment

Yt ¼B0þB1DtþB2TþB3TDtþEt

where B0 is the intercept, B1 is the additive effect of treat-
ment, Dt is a binary indicator of whether treatment has
occured at time t, B2 is the effect of time T, B3 is the effect
of treatment on slope, and Et is random error. Other
covariates may be needed to account for seasonality or
nonlinearity (Kontopantelis et al. 2015), as well as any
serial autocorrelation in residuals that violates modeling
assumptions and interpretation of standard errors (Bernal
et al. 2017). Regardless of the functional form of this
time-series-only modeling approach, strong assumptions
are necessary, including that trends would remain the
same in the post-treatment period as in the pre-treatment
period, and that any difference in trend is related to the
treatment. If these assumptions are unrealistic (as often
the case in ecological time series for example), controls
are needed to parse treatment effects from confounding.

Matching.—Including information from controls is an
obvious way to remove confounding in post-treatment
outcomes, but naive comparisons between treated and
untreated populations can be misleading if systematic
differences exist between control and treatment groups
either in likelihood of selection for treatment, or respon-
siveness to treatment. For instance, assessing the impacts
of wildfire across systems may be complicated by the
fact that some communities are more prone to fire or
burn more intensely than others. Such treatment “selec-
tion bias” is a major challenge for natural experiments,
and much work has been done in the social sciences
developing methods to explicitly account for this bias
via the process of “matching” treated and untreated
units based on their observed characteristics (“condi-
tioning on the observables”; Angrist and Pischke 2008).
A major assumption is that if underlying differences in
treatment assignment or responsiveness are associated
with observable characteristics (e.g., flammability of bio-
mass), comparisons between treatments and controls are

valid if adjusted or matched by these properties (the
Conditional Independence Assumption; Morgan and
Winship 2015).
A wide variety of matching approaches have been

developed (Abadie and Imbens 2006), but one very com-
mon approach in the social sciences is the use of propen-
sity scores, or predicted probabilities of treatment
assignment based on a logistic multiple regression on
observed covariates (Athey and Imbens 2017). Propen-
sity scores are useful because they reduce the dimension-
ality of comparisons between controls and treatments to
a single axis, and serve as a basis for weighting or strati-
fying observations. For land treatment events where the
pattern of treatment assignment is known, propensity
scores or other matching methods may be more applica-
ble as a sorting method to align treated and untreated
observations with similar characteristics. In cases with
low or no replication in treated units, multivariate dis-
tance metrics may be more appropriate.

Difference in differences.—Matching techniques typically
evaluate post-treatment outcomes only and make strong
assumptions about the ability of observed characteristics
to make good matches (Fig. 1). An alternative is differ-
ence in differences (DiD), in which the average difference
between control and treatment are compared before and
after an intervention (Ashenfelter and Card 1985, Aba-
die 2005, Craig et al. 2017). DiD does not rely on
observable characteristics to guide comparisons, and
thus may be useful for cases where such data are unavail-
able or unreliably associated with selection bias, pro-
vided both pre- and post-intervention outcome data are
available. DiD has been widely used in the social sciences
since the 1990s, starting with an influential analysis of
the effects of Cuban migration to Miami on the labor
markets resulting from the Mariel boat lift (Card 1990).
A basic implementation of DiD in a “two-factor” regres-
sion context follows the form

Yit ¼CiþAtþB�DitþEit

where Yit is the response for individual i at time t, Ci is
an individual-level effect, At is time-point effect, Dit is a
binary indicator of whether individual I has been treated
at time t, Eit is the random error for individual i at time t
and B is the overall treatment effect. One strong assump-
tion of DiD is that both treated and untreated units fol-
low the same trajectory in the absence of treatment,
known as the “parallel trends” assumption. A key
advantage of this method is that if the parallel trends
assumption is met, the full set of explanatory covariates
are not needed, but rather biases between control and
treatment groups are accounted for by comparing differ-
ences across time points (also known as “selection on
unobservables”; Morgan and Winship 2015).

Synthetic control.—In DiD, treatment outcomes are
compared to a single control outcome or average of
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outcomes. Synthetic control extends DiD by including
an automated matching step to weight controls and gen-
erate a composite counterfactual for treated units over
time for comparison. The method was developed for
analyzing the effects of economic and political events on
aggregated geopolitical entities (states, regions, coun-
tries), where there was need for (1) ways to estimate
treatment effects for individual units, since many eco-
nomic statistics of interest are only reported at the aggre-
gate level and (2) a transparent, data-driven procedure
for selecting comparison groups from a potentially large
pool of candidates (Abadie et al. 2010). Since its initial
formulation, this method has been used widely in the
social sciences largely in policy evaluation contexts (see
Sills et al. 2015) but also in economics, for instance in a
reanalysis of the Mariel Boatlift data (Peri and Yasenov
2019). Much of the popularity of the method is attribu-
ted to its intuitive improvement over methods that gen-
erate a counterfactual using a coarse average or single
control unit (Athey and Imbens 2017).
The original formulation of synthetic control pro-

posed by Abadie and Gardeazabal (2003) and Abadie
et al. (2010) generates counterfactual estimates based on
a weighted sum of control values, the weights being
selected based on an optimization scheme for data in the
pre-treatment period. By using non-negative weights
between 0 and 1, this method constrains the counterfac-
tual predictions to the range of control unit values,
which conservatively prevents extrapolation but may
generate inferior estimates if controls differ significantly
in magnitude from the treatment (Athey and Imbens
2017). One criticism of the method is that there are no
analytical uncertainty metrics for counterfactual esti-
mates; however, the authors propose a robustness check
by iteratively removing weighted controls and refitting
the model to examine effects on counterfactuals (Abadie
et al. 2015). Furthermore, software implementations of
this method have been critiqued for providing inconsis-
tent weight selection (by cross-validation; Klößner et al.
2018) and inducing problems when all pre-treatment
outcome data are included as criteria for selecting
weights (Kaul et al. 2015). The original weighting
method also assumes that weights remain constant in
the post-treatment phase.
While most references to synthetic control in the liter-

ature refer explicitly to the weighting method developed
by Abadie et al. (2010), other methods apply a similar
approach of building data-driven composite counterfac-
tuals, albeit with different modeling frameworks. One
such implementation of synthetic control designed
specifically to relax the assumption of parallel trends
between control and treatment groups through time is
the “generalized” synthetic control method developed by
Xu (2017). This method generates counterfactuals by
first estimating a set of time-varying latent factors
(essentially unobserved confounders) for which each unit
has a specific affinity, or “loading,” using data from the
control population (Bai 2009). The loadings for treated

units are then estimated and used to predict outcomes in
the post-treatment period. The general functional form
of generalized synthetic control is

Yit ¼ δitDitþxitβþλi f tþ ɛit

where Yit is the observation i at time t, Dit is a binary
indicator of treatment and δit is the treatment effect, xit
are covariates and β their corresponding coefficients, λi
are the loadings for unit i on factors ft, and ϵit is Gaus-
sian random variation. The factors f are estimated using
control data, while λi are fit using a least-squares proce-
dure (Xu 2017). An important assumption of this
method is that the latent factors apply to all units
(though heterogeneously via different loadings), and that
there is sufficient overlap or support between loadings
for treated units and controls, violations of which could
lead to unreasonable extrapolations. The number of
latent factors is a key parameter determining model flex-
ibility and is estimated via cross-validation in the soft-
ware implementation of the method gsynth in R. While
the generalized synthetic control tends to require more
pretreatment data than traditional synthetic control and
has stricter assumptions, the method has the added
advantages of estimating treatment effects for many dis-
tinct units simultaneously, allowing for missing data and
asynchronous treatment implementation dates, and a
bootstrapped semi-parametric standard error estimation
(Xu 2017).
Another implementation of synthetic control uses a

Bayesian structural time series framework to model and
predict the temporal evolution of a counterfactual
observation including information from controls as well
as temporal dynamics of the treated unit (Brodersen
et al. 2015). This implementation uses a state-space or
hidden Markov model framework in which the data gen-
erating process is divided into a “state” equation that
represents the temporal evolution of a latent process and
an “observation” equation that relates the how the state
is realized by observed data. The state equation inte-
grates several sub-models, including a local linear trend,
seasonality, and regression component using values of
controls as predictors and a spike-and-slab prior for
variable selection (Brodersen et al. 2015). The observa-
tion equation follows the general form

Yt ¼ αtþxtβþ ɛt

and the state equation

αtþ1 ¼ μtþ1þγtþ1þηt

where Yt is the treated unit response at time t, α is the
state component, x is a vector of control values, β are
regression coefficients, ϵ is random error, μtþ1 is a local
linear trend (composed itself of both immediate and
long-term processes), γ is the seasonality component,
and ηt is white noise. The spike-and-slab prior is an
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effective method for variable selection in a Bayesian con-
text whereby coefficients are either included or excluded
based on a probability mass centered on “0” (the
“spike”), and then regularized by a Gaussian-shaped
prior if included in the model (the “slab”; Ishwaran and
Rao 2005). In this case, the spike-and-slab prior is used
to identify which controls to include and their weights,
which helps avoid overfitting (Brodersen et al. 2015). In
the software implementation of this method, only
equally spaced, time-varying covariates (i.e., controls)
are accepted, with no missing data (although treated val-
ues may be missing).

Simulation modeling

We examined several quasi-experimental approaches
for estimating landscape-scale events (disturbances or
management activities with a distinct time of initiation)
using simulated remote-sensing data (Table 1): (1)
Interrupted Time Series (ITS), which does not consider
controls (Bhaskaran et al. 2013); (2) traditional “Dif-
ference in Difference” (DiD), where pre-treatment and
post-treatment differences between control and treated
pixels are compared using a linear two-way factor
model (Ashenfelter and Card 1985, Larsen et al.
2019); and (3) Synthetic Control, in which treatment
effects are estimated against an expectation based on
the pre-treatment relationship between control pixels
and treated pixels. We implemented two formulations
of synthetic control: (1) a linear interactive fixed
effects model with latent confounders using the R

package gsynth (Xu 2017) and (2) a Bayesian struc-
tural time series model using the R package CausalIm-
pact (Brodersen et al. 2015).
Although DiD and synthetic control are similar, they

are often considered separately in the literature, and we
hereafter consider DiD distinct from synthetic control
methods. We used default values for all functions, and
simulations and analyses were implemented in R (R
Core Team 2019). It is important to note that the time-
series-only method used here, ITS, can be heavily cus-
tomized in application settings, and we use a very simpli-
fied version as a coarse baseline for estimating trends
without considering controls.
We generated simulated 16-d NDVI time-series data

following the approach of Verbesselt et al. (2010) by
additively combining an NDVI signal from a hypotheti-
cal treatment with various sources of noise (Fig. 1). Pix-
els were modeled either as grassland or forest pixel
types, with a corresponding seasonal sine-wave trends
with amplitudes of 0.4 and 0.1, respectively, and baseline
NDVI values of 0.6 or 0.8 (Verbesselt et al. 2010). The
treatment effect was modeled as an abrupt reduction in
NDVI (−0.1) such as from a large disturbance (e.g., fire
or clearing), followed by a linear recovery over 4 yr
(Fig. 2, “Treatment” panel). To estimate false-positive
error rates, we also included a placebo treatment, with a
treatment effect of 0 after the treatment date. Following
Verbesselt et al (2010), we added random Gaussian
noise, systematically controlling the variance of this
noise among simulations (SD = 0.1, 0.2, . . ., 0.7; Fig. 2,
“Noise” panel).

TABLE 1. Summary of causal inference methods used in simulations.

Method Approach Method Key Assumptions Citation

Interrupted
Time
Series
(ITS)

trend of treated
compared
before and
after treatment

Trend component estimated with
segmented linear regression:
Yt ¼B0þB1DtþB2TþB3TDtþγ1Tþγ2T
where B0 is the intercept, B1 is the additive
effect of treatment, Dt is a binary indicator
of treatment, B2 is the effect of time T, B3 is
the effect of treatment on slope, and γ1 and
γ2 are sine and cosine of 2π × Time divided
by a period of 365 d (Fourier terms for
seasonality).

Post-treatment trajectory
is exclusively related to
treatment, after
accounting for
seasonality and other
variables.

Bernal et al.
(2017)

Difference
in
Difference

pre-treatment differences
between control and
treated compared to
post-treatment
differences.

Applied treatment effect estimated by
subtracting individual and time-period
effects in a linear “two-way fixed effects”
model: Yit ¼CiþAtþB�DitþEit
where Yit is the response for pixel i at time t,
C represents individual effects, A represent
time effects, and B is the treatment effect
with Dit a 0/1 dummy variable indicating
treatment and error as Eit

Parallel trends: that
controls and treated
would follow same
trend, in the absence of
treatment.

Ashenfelter
and Card
(1985)

Synthetic
Control

treatment values
compared to prediction
from functional relation
between control and
treatment, before
exposure

Interactive factor model with latent variables
selected by cross-validation.

Latent time-varying
factors influence both
treated and control
units.

Xu (2017)

Bayesian structural time series model with
local linear trend, seasonality and linear
regression components in the “process” part
of the model.

Parallel trends Brodersen
et al.
(2015)
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Since we were interested in assessing treatment effects
in the presence of a variety of potential confounding fac-
tors, we added three additional sources of systematic
noise to simulated time series: (1) random drops of 0.25
NDVI, corresponding to cloud contamination or sensor
error in a satellite image (Fig. 2, panel “Satellite”); (2) a
growing-season climate anomaly resulting in increased
or decreased production (e.g., Wang et al. 2003; Fig. 2,
panel “Climate”); and (3) signal drift over time as from
vegetative dynamics (e.g., Anyamba and Tucker 2005;
Fig. 2, panel “Drift”). The probability of a satellite/cloud
error was set at 5%. The climate anomaly was added as a
symmetric Gaussian function centered around 20 April,

with the magnitude drawn from a Gaussian distribution
(SD = 0.1). We introduced a small amount of serial cor-
relation in climate anomalies to account for multi-year
climate trends using a low-pass filter (R function “filter”
with 1 lagged forecast error). Vegetation drift was simu-
lated by a random Gaussian walk with a standard devia-
tion of 0.05.
For each simulation, we also generated a set of “con-

trol” pixels, which did not include the treatment effect.
We set the number of control pixels in a simulation to
either 1, 5, 10, 50, or 100 to observe how the number of
controls would affect the accuracy of different methods.
These pixels received the same set of confounders
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FIG. 2. Example of a simulated NDVI time series for a forest (Sim. Obs.) composed by adding various trends and sources of
random noise. “Treatment” represents the hypothetical “true” disturbance and recovery trajectory added to the simulated remote-
sensing time series and estimated by various methods.
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(climatic, satellite, and drift) but separate realizations of
random noise.
Different parts of a landscape are likely to have

heterogenous responses to a similar exogenous influence
(e.g., climate). To account for differing sensitivities to
confounding factors among pixels, the signals for con-
founding variables were multiplied by a pixel-specific
coefficient before being added to the overall NDVI
response. Coefficients were drawn from a Gaussian dis-
tribution with a mean of 1 and standard deviation of
0.25. Since sensitivity to confounders might also vary
through time, confounders were multiplied by a similar
coefficient with a random Gaussian coefficient (1 + SD
= 0.05) for each pixel at each time point.
The accuracy of synthetic control and other differenc-

ing methods is likely to depend on the degree of underly-
ing similarity between a treated unit and its controls. In
an application setting, a large number potential controls
might need to be screened using matching techniques to
find control pixels with similar properties (Abadie et al.
2010) but perfect matching is unlikely. To assess the
effects of potential mismatch between control and trea-
ted pixels during an initial matching step on the

accuracy of different methods, we generated three differ-
ent scenarios (Fig. 3): (1) All control pixels are of the
same landscape type (forest or grassland) as the treated
pixel (mismatch = 0); (2) 50% of the control pixels are
of a different landscape type (mismatch = 0.5), or (3) all
of the control pixels are of a different landscape type
(mismatch = 1).
Finally, a unique aspect of the remote sensing data for

causal analysis is the potential for spatial dependence
among control pixels. To explore how high levels of spa-
tial autocorrelation might influence estimates, we
induced a pseudo-spatial correlation structure in control
values for a subset of simulations (all permutations with
noise level fixed at 0.01). For each simulation, a 20 × 20
pixel Gaussian random field was generated using an
exponential distance decay function with a sill of 0.25,
and a range of 10, using the R package gstat (Gräler
et al. 2016). Controls were then randomly assigned to
pixels from this simulated “image,” and the degree of
autocorrelation was assessed using Moran’s I. Random
field values were then multiplied with either net con-
founders (climate + satellite + vegetation dynamics),
random noise, or the raw response profile of the controls
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to induce pseudo-spatial structure. For each simulation,
the correlation structure remained static through time.
For each combination of conditions (landscape type,

control mismatch, number of controls, random noise
level) we generated 1,000 simulated time series and
obtained treatment effect estimates for all methods
(Table 1). We assessed errors as the difference between
the “true” simulated treatment effect (“Treatment” in
Fig. 2) and treatment effects estimated by various meth-
ods, at each point in the post-treatment time period for
each simulation. For methods that provided confidence
or credible intervals, we also assessed sensitivity by
counting whether the upper bounds of the estimated
treatment effect intervals excluded zero at each point in
the post-treatment time series. Simulation code is hosted
on Zenodo; see Data Availability.

Case study

We briefly demonstrate use-case of synthetic control
for inferring management intervention effects without a
priori controls in the context of a brush-clearing treat-
ment that occurred in southeastern Utah, USA in 2009.
The Shay Mesa Restoration Project was designed to
reduce fuel loads and improve wildlife habitat by remov-
ing pinion (Pinus edulis) and juniper (Juniperus osteos-
perma) trees over a 750-ha treatment area, using various
brush-clearing methods (details in Karl et al. 2014 and
Gillan et al. 2016). We assessed treatment effects based
on a bimonthly time series of Landsat-based 30-m reso-
lution Soil Adjusted Total Vegetative Index (SATVI;
Marsett et al. 2006), comparing pixels in the treated
areas to their synthetic controls from pixels in surround-
ing areas. For each treated pixel, we narrowed candidate
pool of control pixels with a matching algorithm devel-
oped by Nauman and Duniway (2016). Further details
available in Appendix S1: Section S1.

RESULTS

Simulations

In simulations, absolute point-wise errors for the dif-
ferent methods of determining treatment effects (time-
series-only, DiD, synthetic control) were largely contin-
gent on both data availability (i.e., the number of con-
trols available) and data quality (the degree of mismatch
between controls and treatments). When controls were
well matched with the treatment pixel, all methods that
included controls were superior to the baseline estimates
from the time-series-only method (ITS), regardless of
the number of controls available (Fig. 4, top row).
As more mismatched pixels were introduced to the

control population, accuracy depended more on the
number of controls available, with a larger number of
controls generally improving estimates for the synthetic
control methods (Fig. 4, middle row). The CausalIm-
pact synthetic control method needed only 5 controls to

achieve estimates superior to ITS, while gsynth required
between 5 and 50. Unlike the synthetic control methods,
DiD was generally less accurate than the time-series-
only method, likely stemming from its naı̈ve aggregation
of all controls, resulting in bias.
When all control pixels were poorly matched to the

treated pixel, only the CausalImpact method outper-
formed the baseline time series-only method, and only
with many controls (Fig. 4, bottom row). Poorly
matched controls resulted in both DiD and gsynth meth-
ods being less accurate than baseline, and the DiD
method performed worse with larger numbers of poorly
matched controls, again due to the naı̈ve aggregation of
controls for comparison.
In most cases, increases in signal-to-noise ratio (effect

size/SD of random noise) led to marginal reductions in
error (Fig. 4), particularly after signal magnitude
reached 10–50% of the average variation in the random
noise component. The absolute magnitude of the com-
bined confounder signal also contributed to error, but
only when imperfect matches between controls and trea-
ted pixels were present.
Confidence envelopes for treatment effects revealed

differences between methods, which varied by level of
noise and control mismatch (Fig. 5). The CausalImpact
method was the most conservative (low sensitivity), espe-
cially when the signal-to-noise ratio was low (Fig. 5).
Even when the signal-to-noise ratio was high, only ~25%
of the true effects were determined to be significantly dif-
ferent from zero. Both DiD and gsynth tended to have
smaller confidence envelopes, which resulted in more fre-
quent “significant” treatment effects but also erro-
neously significant effects for the placebo (Fig. 5).
Gsynth’s sensitivity, but also its false-positive rate
tended to increase with more controls (Fig. 5 top row).
Confidence envelopes for both DiD and gsynth did not
appear to reflect greater uncertainty when control popu-
lations were completely mismatched to treatment (Fig. 5
bottom row), remaining relatively narrow. This may have
been driven by the inability of either method to account
for the differing seasonal signal in the control popula-
tions (e.g., Fig. 3 right column).
Error for control-based methods generally increased

with confounding, and this effect was heightened in
cases where controls were mismatched (Fig. 6). Average
errors tended to be negative, meaning on average, pre-
dicted effect sizes tended to be greater than true effects
(Fig. 6). Bias also tended to increase with mismatch
(Fig. 6), but mostly for DiD and gsynth methods. The
CausalImpact synthetic control method tended to have
lower bias across simulations.
Simulated autocorrelation tended to have negligible

effects on bias and error for the methods that used con-
trols, except for when autocorrelation was applied to
each control pixel’s response trajectory (Appendix S1:
Fig. S1, S2). In this case, predictions tended to improve
with greater levels of autocorrelation, particularly for
the gsynth method in conditions of extremely poor
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matching (mismatch = 1). This may be due to effective
“shrinkage” or reduction in noise induced by the auto-
correlation procedure.

Case study

An example implementation of synthetic control for
determining different brush-clearing treatment effects
using CausalImpact (Brodersen et al. 2015) is presented
in Fig. 7. There was clear differentiation among treat-
ment areas in terms of cumulative effect size derived

from synthetic control (Fig. 7F) but point-wise estimates
were significantly noisier (Fig. 7E).

DISCUSSION

Controls are important

On a basic level, our study highlights the value of
using controls when estimating the effects of large-scale
ecological interventions, particularly with noisy data
from satellites. In the simulations, methods that
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incorporated data from some kind of properly matched,
untreated group were more accurate at estimating “true”
treatment effects than methods that relied on time series
alone (Fig. 4). For data with many potential confound-
ing variables, such as remote sensing time series, controls
provide an intuitive baseline to remove these effects. In
the simulations, relatively large (but not unreasonably
so; Verbesselt et al 2010) confounders were intentionally
included as proof of concept. In actual remotely sensed
data, the strength of confounding will likely depend on

ecological context, with more heterogeneous landscapes
subject to greater confounding (Reed et al. 1994).

Matching is important

While post hoc controls were useful for estimating
treatment effects, simulations showed that improperly
matched controls could be counter-productive, depend-
ing on the availability of data and the method used to
infer effects. The CausalImpact method was able to
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accurately estimate the treatment effect given enough
control data in simulations, likely in part because it
explicitly includes a seasonality component in its model
and it implements an efficient control selection method
in the spike-and-slab prior (Brodersen et al. 2015; see
Fig. 2). It is unclear the degree to which such inference
could be achieved with non-simulated, poorly matched
data. In the simulation, poorly matched controls were
designed to respond to the same confounders (i.e., sea-
sonality, clouds, trends) as the treated pixel, only at a dif-
ferent magnitude. This might not be the case with real
data where a mismatched land-cover type might have a

qualitatively different response to a confounder com-
pared to the treated pixel (e.g., an irrigated field vs. rain-
fed grasslands). Ultimately, some level of underlying cor-
respondence must exist between control and treatment
observations for control-based methods to be valid,
highlighting the important role of finding accurate
matches between control and treatment populations.
The further development and implementation of reliable,
automated techniques for finding spatial comparisons
across ecological contexts is needed in an application
context (Nauman and Duniway 2016). Nevertheless, our
results suggest that under certain conditions synthetic

FIG. 6. Absolute error and bias (average predicted treatment effect minus true treatment effect) as a function of point-wise con-
founder magnitude (net displacement from satellite, climate, and drift) and control mismatch (misMatch), by method. Methods
included CausalImpact (CI), gsynth (GS), Difference in Differences (DiD), and Interrupted Time Series (ITS).
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control can relax some of the need for direct correspon-
dence between controls and treated units by flexibly
“learning” the shared patterns in the data.

Method specific details

While the synthetic control approach may be useful
for a wide variety of ecological data, specific implemen-
tations and models may have distinct advantages in dif-
ferent contexts. For instance, if treatments and controls
are well matched and unlikely to violate the parallel tra-
jectories assumption, simple DiD implementations may
be sufficient, as they were in simulations with no treat-
ment–control mismatch (Fig. 4, top row). Some varia-
tion of DiD is probably the most common approach for

remote sensing applications seeking to infer landscape
change currently (e.g., forest regeneration, grazing
impacts, etc.). However, parallel trends assumptions are
often violated in real data (Abadie 2005, Xu 2017), and
more sophisticated models may be able to flexibly learn
relationships before treatment happens and extend these
relationships through time after the treatment happens.
In this study, we investigated two such synthetic con-

trol approaches (gsynth and CausalImpact), but in the-
ory any function-fitting method may be used. While our
study found the CausalImpact method to be generally
most accurate at predicting “true” treatment effects
across simulations conditions, advantages of the gsynth
method include its ability to generate counterfactuals for
multiple treated units simultaneously, and its robustness

FIG. 7. Example implementation of synthetic control for a pinion–juniper clearing in southeast Utah (details of study in
Appendix S1: Section S1). (A and B) Treated site before and after brush treatments (C, Control; P, Pile Burn; M, Mastication; B,
Burn). (C) Estimated median per-pixel treatment effect heatmap using the CausalImpact method for the 2010 growing season
(March–November) in terms of Soil Adjusted Total Vegetative Index (SATVI ) × 1,000. (D) Raw SATVI time series for a treated
pixel (red) and its controls (gray). (E) Point-wise estimated treatment effects and trend line using the Bayesian structural time series
in “CausalImpact.” (F) Pixel-wise cumulative treatment effects over time, analogous to exposure of bare ground integrated over time.
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to missing data. One consideration for both methods is
selecting the degree of flexibility used in model fitting,
which includes the number of potential latent variables
(r) for gsynth and the inclusion of time-varying regres-
sion coefficients for CausalImpact. In both cases, high
flexibility may lead to overfitting and biased predictions
for counterfactuals (Brodersen et al. 2015, Xu 2017).
Use of validation metrics can further help evaluate relia-
bility of different model formulations (R2 for the Causa-
lImpact Bayesian Structural Time series model and
mean squared prediction error for gsynth). Validating
the accuracy of synthetic control predictions against data
withheld from the pretreatment period is another recom-
mended practice to sense-check model fit. It is important
to note that we used default values for each method in
the simulations to avoid bias, but in practice fine-tuning
the settings of a selected method is recommended.
The levels of uncertainty reported by various methods

may also be important to consider for use of synthetic
controls in applications. CausalImpact generally had
conservative estimates, with “significant” treatment
effects (e.g., credible intervals not crossing zero) occur-
ring at a maximum of roughly 50% of the point-wise
instances with very high signal-to-noise ratios (Fig. 5).
By contrast, the gsynth method typically had tighter
confidence bands (e.g., Fig. 3) even in cases where pre-
dictions were obviously poor due to mismatched con-
trols (Fig. 5). These overly narrow confidence bands in
gysnth may be an artifact of violated assumptions of the
parametric standard error estimates used in simulations
(Xu 2017).

Notes for application

In application settings, there may be observed significant
amounts of heterogeneity in estimated treatment effects,
both within treated areas and through time (Fig. 7). With-
out accounting for such within-treatment heterogeneity,
aggregations across space to estimate net effects may dis-
count important variation in treatment response and
potentially bias conclusions. Rather, this variation may be
used to extend insight about fine-scale environmental con-
trols on treatments or expected spatial variance in treat-
ment efficiency by ecological context. Masking out
unresponsive areas (e.g., rocky areas unlikely to change) or
stratifying responses by environment may be necessary for
modeling general responses. In the case study, we also used
raw 16-d SATVI time series as our response variable of
interest, without implementing any cloud masking. In
aggregate, predicted effects showed clear trends but point-
wise estimates remained noisy (Fig. 6 E). In practice, an
additional step of cloud masking, aggregating to a broader
temporal scale or implementing low-pass filtering on the
time series may help improve results.
In this example, we also used only the pre-treatment

SATVI control pixel time series for modeling the rela-
tionship between treatment and controls, but potentially
any number of other predictors could also be included

(but see Ferman et al. 2020), including other remotely
sensed indices or climate data. Currently, the CausalIm-
pact method only accepts time-varying covariates; how-
ever, it has been argued that control outcomes are more
important than covariates for generating synthetic con-
trols (Doudchenko and Imbens 2016, Athey and Imbens
2017).
One potentially useful feature of the synthetic control

that we did not explore is the fact that control weights or
coefficients are available to be examined and interpreted.
For instance, the generalized synthetic control method
(gsynth) provides estimates of time-varying latent fac-
tors, which may have real-world interpretations given
contextual knowledge (Xu 2017). Abadie et al. (2015)
generate a ranked list of countries that are given large
weights in approximating synthetic west Germany and
speculate about the underlying reasons for this. In an
implementation of synthetic control for landscape treat-
ment effects, visualization and interpretation of these
weights may be helpful for understanding spatial rela-
tionships in data and generating hypothesis for drivers
of ecological change.

Broader implications

In deciding how to manage ecological systems, one
often looks to examples of similar sites or situations to
gauge the range of expected behavior resulting from an
action. The power of this inference typically depends on
how well the comparison sites are representative of the
location of interest, both in terms of ecological potential
and ecological state at the time of intervention. The fre-
quent need for these types of comparisons has led to
many landscape classification systems (Salley et al. 2016)
that parse regions by ecological potential (e.g., NRCS
Ecological Site Descriptions; Duniway et al. 2010) and
describe the range of ecological conditions expected given
that potential (e.g., State and transition models; Bestel-
meyer et al. 2004). The synthetic control approach has
the potential to essentially systematize this search for suit-
able comparison sites by integrating information about
ecological state (remotely sensed time series of vegetation)
with ecological potential (soils and topography), espe-
cially if the pool of candidate controls initially screened
based on environmental data (e.g., Nauman and Duniway
2016). Thus, this approach may be considered a quantita-
tive and scalable framework for conducting a common
activity that is often conducted on an ad hoc basis.
With the burgeoning availability of ecological data

from remote-sensing imagery, sensor and monitoring
networks, and crowd-sourced data, there is new opportu-
nity for ecological insight but also a growing need for
methods to make sense of large, noisy, observational
data sets (e.g., Copeland et al. 2018). The synthetic con-
trol framework is particularly well suited for this kind of
data in that it generates intuitive interpretations of treat-
ment effects without relying on many of the formal stric-
tures of experimental design. For instance, synthetic
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control can provide a quantitative estimate for the
response to a “no-action alternative,” commonly
included in environmental analysis (e.g., NEPA; Steine-
mann 2001). Furthermore, sophisticated versions of syn-
thetic control methods can be easily implemented in
open-source software environments, flexibly learn from
multiple types of time series data, and provide robust
estimates of uncertainty. In this study, we show how syn-
thetic control can be used in the context of quantifying
the effects of landscape-scale ecological events using
remote sensing data. However, we believe that these
techniques developed in the disciples of political science
and econometrics can be helpful for a wide variety of
questions and data sets in ecology.
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Kaul, A., S. Klößner, G. Pfeifer, and M. Schieler. 2015. Syn-
thetic control methods: Never use all pre-intervention out-
comes together with covariates. Munich Personal RePEc
Archive. No. 83790. https://mpra.ub.uni-muenchen.de/83790/

Kinn, D.2018. Synthetic control methods and big data. arXiv
preprint arXiv:1803.00096.
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